Unifying Structural Proximity and Equivalence for Network Embedding

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRUNE: Preserving Proximity and Global Ranking for Network Embedding

We investigate an unsupervised generative approach for network embedding. A multi-task Siamese neural network structure is formulated to connect embedding vectors and our objective to preserve the global node ranking and local proximity of nodes. We provide deeper analysis to connect the proposed proximity objective to link prediction and community detection in the network. We show our model ca...

متن کامل

Heterogeneous Information Network Embedding for Meta Path based Proximity

A network embedding is a representation of a large graph in a lowdimensional space, where vertices are modeled as vectors. The objective of a good embedding is to preserve the proximity (i.e., similarity) between vertices in the original graph. This way, typical search and mining methods (e.g., similarity search, kNN retrieval, classification, clustering) can be applied in the embedded space wi...

متن کامل

Fast Network Embedding Enhancement via High Order Proximity Approximation

Many Network Representation Learning (NRL) methods have been proposed to learn vector representations for vertices in a network recently. In this paper, we summarize most existing NRL methods into a unified two-step framework, including proximity matrix construction and dimension reduction. We focus on the analysis of proximity matrix construction step and conclude that an NRL method can be imp...

متن کامل

Stochastic proximity embedding

We introduce stochastic proximity embedding (SPE), a novel self-organizing algorithm for producing meaningful underlying dimensions from proximity data. SPE attempts to generate low-dimensional Euclidean embeddings that best preserve the similarities between a set of related observations. The method starts with an initial configuration, and iteratively refines it by repeatedly selecting pairs o...

متن کامل

SPINE: Structural Identity Preserved Inductive Network Embedding

Recent advances in the field of network embedding have shown that low-dimensional network representation is playing a critical role in network analysis. Most existing network embedding methods encode the local proximity of a node, such as the firstand secondorder proximities. While being efficient, these methods are short of leveraging the global structural information between nodes distant fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2932396